The Warm-Hot Universe An Introduction

Roger Blandford
KIPAC
Stanford

X-Ray Background

- Giacconi et al 1962
- Aerobee sounding rocket
 - cf Ariel 1
- Detect XRB
 - 40 keV IGM!
 - Now $\sim 3 \times 10^8 AGN$

7 v 2008

X-ray Clusters

- Optical clusters
 - Zwicky, Abell (4000)
- · X-rays
 - Uhuru 1970s
- · ROSAT BCS
 - 300 clusters

Groups and Galaxies

- Galaxies retain hot halos especially when massive
 - FUSE Galaxy observations (1-3 \times 10⁵K)
- Retain gas despite tidal and ram pressure stripping especially when massive ellipticals

Can we use to trace interaction history?

Non X-ray Observations

- Much improved agreement between X-ray and weak +strong lensing mass distributions
- Gas distribution also consistent
- Consistency with SZ?
- Thermal energy not n²

Is this now typical?

7 v 2008

Scaling relations

- eg M ~ T^{1.5}, L(T) relation
- · Definition of M, L
 - Does not converge!
 - Need consistent profile definitions etc
- Consistency with simulations?
 - Validation of cluster counting proposals

(Non) Cooling (Non)Flows

- 1000 M_{sun} yr⁻¹?!
 - Gas cools to ~0.3 T then vanishes independent of starting temperature?
- Is it heated and maintained at this temperature by radio bubbles??
 - Sound waves, internal waves, wakes,
- Does it radiate in some other band?
 - eg far ultraviolet
- Is cosmic ray pressure important

Excess emission

- Soft Excess
- Hard Excess
- Very difficult observations
 - Background subtraction
 - Instrumetal effects
 - Absorption
- Additional thermal components?
 - bremsstrahlung
- Cosmic ray electrons
 - Radio halos eg Coma C
 - Synchrotron or inverse Compton?

Physics of Hot Gas

- Cooling
 - Two phase cooling
- Thermal conduction
 - Cold fronts
- Viscosity?
- · Reynolds' Number
- Cosmic rays, Magnetic field (shocks)

Nonthermal electron acceleration

Diffusive Shock Acceleration

- Transmit CR protons with P_{CR} ~ $E^2N(E)$ ~ $E^{-.2}$ ~ $0.1\rho u^2$
- $-P_{e} \sim 0.03 P_{p}$
- Accounts for GCR after including propagation
- Observed in IPM
- Generic eg clusters of galaxies

Radio observations of SNR

- Relativistic electron spectrum
- Tycho, Cas A....

X-ray observations of SNR

- 2-100 keV
- 100TeV electrons
- Variable (Uchyama et al)
- >0.1mG fields

7 v 2008

Proton Acceleration?

- RX J1713.7-3946
 - AD385, R ~ 10pc, u~3000 km s-1
 - $\rho \sim 10^{-25} \text{ g cm}^{-3}$; P₋ $\sim 10^{-12} \text{ dyne cm}^{-2}$;
 - $P_{+} \sim 10^{-8} \text{ dyne cm}^{-2}$; M ~ 150
- ~O.1 PeV γ-rays
 - Inverse Compton by electrons?
 - Pion decay from protons?
 - Accelerate ~0.3 PeV protons?
 - Explain knee in GCR spectrum
- $L_x/L_y \sim 3 \Rightarrow$ hadronic emission?
 - $= P_{+}(100 \text{ TeV}) \sim 10^{-10} \text{ dyne cm}^{-2}$
 - => $P_{+}(GeV) \sim 10^{-9} \text{ dyne cm}^{-2} \sim 0.1 P_{+}$
 - $P_{+}(e) \sim 3 \times 10^{-11} \text{ dyne cm}^{-2}$
- Particle transport
 - $r_L \sim 4 \times 10^{12} E_{GeV} B_{uG}^{-1} Z^{-1} cm$
 - <u R/c

7 v 2008

PeV CR => mG field

Relativistic particle acceleration by collisionless shocks is generic

- High Mach number shocks should transmit (>GeV) protons
- Partial pressures ~ 0.1-0.3 x thermal pressure
- Also electrons with lower partial pressure
- eg hot intergalactic medium
- No escape from universe
- Nearby clusters should be GLAST sources

Local WHIM

- IGM density at z~3 consistent with BBN
- · "Missing baryons" (Persic & Salucci, Fukugita etal)
- Galaxies and Clusters: $0.1 \times \Omega_b$

Definitions?

- Hot gas galaxy halos
 - Ram pressure stripping?
- Cool (<10 5 K): 0.3 x Ω_b
 - Ly α less than high z
- Warm (1-5 $\times 10^5$ K): 0.5 $\times \Omega_b$?
 - OVI abs, broad Ly α
- Hot (0.5-2x10⁶K): $0.1 \times \Omega_{\rm b}$
 - OVII, OVIII abs
 - Only in galactic halos?

Model observation conflict?

Cosmology

- X-ray record is good!
 - $-\Omega_{\rm m}, \sigma_{\rm 8}...$
 - Relaxed clusters -> fgas
- Dark Matter
 - Bullet cluster et al DM non collisional
 - MOND/TeVeS etc...
- Dark energy
 - X-rays largely ignored by DETF!
 - Can cluster observations provide a competitive measure of the evolution of dark energy?
 - ~500 relaxed clusters?
 - Do we know cluster properties well enough?
 - Are SZ clusters being found as expected?

Future

- · GLAST
- NuSTAR
- NeXT
- Wide field survey telescopes
- · Simbol-X
- · e-Rosita
- Constellation-XEUS

7 v 2008

GLAST

- Joint NASA-DOE-Italy- France-Japan-Sweden, Germany... mission
- · Launch June 4 2008?
 - Cape Canaveral
- 50-100 x EGRET; high energy extension
 - Future program likely ground-based for a while
 - TeV astronomy

GLAST

LAT

- 0.02 300 GeV
- 2.5 sr, 0.3 0.9m²
- 5° 5'resolution
- ∆ln E ~ 0.1
- 3 x 10⁻⁹ cm⁻² s⁻¹ (>0.1 GeV, point source)
- 10⁹ photons (3Hz)
- All sky every 3hr

Sources after a decade?

- 10,000 Active Galactic Nuclei
- 1000 Gamma Ray Bursts
- 100 Pulsars
- 100 Supernova Remnants
- 10 Galaxies
- 10 Clusters of Galaxies
 - Csomic rays, dark matter
- 10 X-Ray Binaries
- · ? Unidentified Sources

GBM

- 0.01-30 MeV
- 9sr, 100 cm².
- 1º resolution
- Δln E ~ 0.1
- Combine with Swift

7 v 2008